6.7 Inner Product Spaces

We generalize the notion of inner product from R" to a general vector space V:

Definition An inner product on a vector space V is a function that, to each pair of vectorsu and vin V,
associates a real number (u, v) and satisfies the following axioms, for all u, v, and w in V and all scalars ¢ :

(u,v) = (v,u)

(utv,w) = (u,w) + (v, w)

(cu,v) = c{u,v)

(u,u) > 0and (u,u) = 0ifand onlyifu =0

A vector space with an inner product is called an inner product space.
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Example 1 Fix any two positive numbers-say, 4 and 5-and for vectors u = (u1,us) and v = (v, vs) in R?,
set

(u,v) = 4u1v1 + bugvs (1)

Show that equation (1) defines an inner product.
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Lengths, Distances, and Orthogonality

e Let V be an inner product space, with the inner product denoted by (u, v).

e Define the length, or norm, of a vector v to be the scalar

Vil =4/ (v, v)

Equivalently, |v|? = (v, V).
A unit vector is one whose length is 1. The distance between u and v is ||ju — v]||.
Vectors u and v are orthogonal if (u,v) = 0.

An inner producton P,
® letty,...,t, bedistinct real numbers. For p and q in IP,,, define
(p,q) = p(to)q (to) +p (t1)q(t1) + - +p(ta)a(ts) (2)
Inner product Axioms 1-3 are readily checked. For Axiom 4, note that
(pp) = [p (t0)]* + [p (t2)]" + -+ [p(t)) > 0

Also, (0,0) = 0. If (p, p) = 0, then p must vanish at n + 1 points: tg, . .., t,. This is possible only if p is
the zero polynomial, because the degree of p is less than n + 1. Thus (2) defines an inner product on IP,,.

Example 2 Consider Py with the inner product given by evaluation at —1,0, and 1.

(1) Compute (p, q), where p(t) = 3t — t%,q(t) = 3 + 2t>.

(2) Compute ||p|| and ||q||, for p and g in (1).

(3) Compute the orthogonal projection of g onto the subspace spanned by p, for p and g in (1).
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The Gram-Schmidt Process

The existence of orthogonal bases for finite-dimensional subspaces of an inner product space can be
established by the Gram-Schmidt process, just as in R™.

Example 3 Let V be P4 with the inner product given by the evaluation at —2, —1, 0, 1, and 2, and view Py as a

subspace of V. Produce an orthogonal basis for Py by applying the Gram-Schmidt process to the polynomials
1,t, and t2.
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Best Approximation in Inner Product Spaces

Example 4. Let V be P4 with the inner product in Example 3, and let pg, p1, and ps be the orthogonal basis
found in Example 3 for the subspace Ps.

Find the best approximation to p(t) = 5 — %t“ by polynomials in Py.
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An Inner Product for Cla, b

For f,gin Cla, b], set

b
(9) = [ gttt @
Then (3) defines an inner product on C|a, b]. Since

e Inner product Axioms 1-3 follow from elementary properties of definite integrals. For Axiom 4, observe
that

b
) = / F(0)2dt > 0

e The function [f(#)]? is continuous and nonnegative on [a, b]. If the definite integral of [f(¢)]? is zero, then

[£()]2 must be identically zero on [a, b], by a theorem in advanced calculus, in which case f is the zero
function.

e Thus (f, f) = 0implies that f is the zero function on [a, b]. So (3) defines an inner product on C|a, b].

Example 5 Let V be the space C[—1, 1] with the inner product

Reall [ = L 4™ e

(fi9) = /_ 11 F(t)g(t)dt.
Find an orthogonal basis for the subspace spanned by the polynomials 1, ¢, and £2.
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Exercise 6. Let ’3 have the inner product given by evaluation at —3, —1, 1, and 3.

Let po(t) = 1,p1(t) = t, and pa(t) = t2.

a. Compute the orthogonal projection of ps onto the subspace spanned by pg and ps.

b. Find a polynomial g that is orthogonal to pg and p1, such that {pg, p1, q} is an orthogonal basis for Span
{po, p1,p2}. Scale the polynomial g so that its vector of values at (—3,—1,1,3)is (1, —1,—1,1).

Solution. The inner product is (p, ¢) = p(—3)q(—3) + p(—1)q(—1) + p(1)q(1) + p(3)q(3).

a. The orthogonal projection ps of ps onto the subspace spanned by py and py is

A _ (p2po) (p2,p1) _ 20 04
P2 = 5 o) PO + (o) P1 = 72 (1) + 50t = 5.

b. The vector ¢ = py — ps = t2 — 5 will be orthogonal to both pg and p; and {po, p1, ¢} will be an orthogonal
basis for Span {pg, p1, P2 }. The vector of values for g at (—3, —1,1,3) is (4, —4, —4,4), so scaling by 1/4
yields the new vector ¢ = (1/4) (t* — 5).

Exercise 7. Let P53 have the inner product as in Exercise 6, with pg, p1, and g the polynomials described there.
Find the best approximation to p(t) = t3 by polynomials in Span {p, p1, ¢}

Solution. The best approximation to p = t3 by vectors in W = Span {py, p1, ¢} will be
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