We generalize the notion of inner product from \mathbb{R}^{n} to a general vector space V :
Definition An inner product on a vector space V is a function that, to each pair of vectors \mathbf{u} and \mathbf{v} in V, associates a real number $\langle\mathbf{u}, \mathbf{v}\rangle$ and satisfies the following axioms, for all \mathbf{u}, \mathbf{v}, and \mathbf{w} in V and all scalars c :

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle$
2. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
3. $\langle c \mathbf{u}, \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$
4. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ and $\langle\mathbf{u}, \mathbf{u}\rangle=0$ if and only if $\mathbf{u}=\mathbf{0}$

A vector space with an inner product is called an inner product space.

Example 1 Fix any two positive numbers-say, 4 and 5-and for vectors $\mathbf{u}=\left(u_{1}, u_{2}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}\right)$ in \mathbb{R}^{2}, set

$$
\begin{equation*}
\langle\mathbf{u}, \mathbf{v}\rangle=4 u_{1} v_{1}+5 u_{2} v_{2} \tag{1}
\end{equation*}
$$

Show that equation (1) defines an inner product.
ANS: For axiom 1, $\langle\vec{u}, \vec{v}\rangle=4 u_{1} v_{1}+5 u_{2} v_{2}=4 v_{1} u_{1}+5 v_{2} u_{2}=\langle\vec{v}, \vec{u}\rangle$
For axiom 2, Let $\vec{w}=\left(\omega_{1}, w_{2}\right)$, then

$$
\begin{aligned}
\langle\vec{u}+\vec{v}, \vec{w}\rangle & =4\left(u_{1}+v_{1}\right) w_{1}+5\left(u_{2}+v_{2}\right) w_{2} \\
& =4 u_{1} w_{1}+5 u_{2} w_{2}+4 v_{1} w_{2}+5 v_{2} w_{2} \\
& =\langle\vec{u}, w\rangle+\langle\vec{v}, w\rangle
\end{aligned}
$$

For axiom 3,

$$
\begin{aligned}
\langle c \vec{u}, \vec{v}\rangle & =4 c u_{1} v_{1}+5 c u_{2} v_{2} \\
& =c\left(4 u_{1} v_{1}+5 u_{2} v_{2}\right) \\
& =c\langle\vec{u}, \vec{v}\rangle
\end{aligned}
$$

For axiom 4, $\langle\vec{u}, \vec{u}\rangle=4 u_{1}^{2}+5 u_{2}^{2} \geqslant 0$
and $4 u_{1}^{2}+5 u_{2}^{2}=0$ if and only if $u_{1}=u_{2}=0$, ie. $\vec{u}=\overrightarrow{0}$ Thus (1) defines an inner product on \mathbb{R}^{2}.

Lengths, Distances, and Orthogonality

- Let V be an inner product space, with the inner product denoted by $\langle\mathbf{u}, \mathbf{v}\rangle$.
- Define the length, or norm, of a vector v to be the scalar

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}
$$

- Equivalently, $\|\mathbf{v}\|^{2}=\langle\mathbf{v}, \mathbf{v}\rangle$.
- A unit vector is one whose length is 1 . The distance between \mathbf{u} and \mathbf{v} is $\|\mathbf{u}-\mathbf{v}\|$.
- Vectors \mathbf{u} and \mathbf{v} are orthogonal if $\langle\mathbf{u}, \mathbf{v}\rangle=0$.

An inner product on \mathbb{P}_{n}

- Let t_{0}, \ldots, t_{n} be distinct real numbers. For p and q in \mathbb{P}_{n}, define

$$
\begin{equation*}
\langle p, q\rangle=p\left(t_{0}\right) q\left(t_{0}\right)+p\left(t_{1}\right) q\left(t_{1}\right)+\cdots+p\left(t_{n}\right) q\left(t_{n}\right) \tag{2}
\end{equation*}
$$

Inner product Axioms 1-3 are readily checked. For Axiom 4, note that

$$
\langle p, p\rangle=\left[p\left(t_{0}\right)\right]^{2}+\left[p\left(t_{1}\right)\right]^{2}+\cdots+\left[p\left(t_{n}\right)\right]^{2} \geq 0
$$

Also, $\langle\mathbf{0}, \mathbf{0}\rangle=0$. If $\langle p, p\rangle=0$, then p must vanish at $n+1$ points: t_{0}, \ldots, t_{n}. This is possible only if p is the zero polynomial, because the degree of p is less than $n+1$. Thus (2) defines an inner product on \mathbb{P}_{n}.

Example 2 Consider \mathbb{P}_{2} with the inner product given by evaluation at $-1,0$, and 1 .
(1) Compute $\langle p, q\rangle$, where $p(t)=3 t-t^{2}, q(t)=3+2 t^{2}$.
(2) Compute $\|p\|$ and $\|q\|$, for p and q in (1).
(3) Compute the orthogonal projection of q onto the subspace spanned by p, for p and q in (1).

ANS:
(1) The inner product is

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

So

$$
\left\langle 3 t-t^{2}, 3+2 t^{2}\right\rangle=-4 \times 5+0 \times 3+2 \times 5=-10
$$

(2) $\|p\|=\sqrt{\langle p, p\rangle}$

$$
\begin{aligned}
\langle p, p\rangle & =\left\langle 3 t-t^{2}, 3 t-t^{2}\right\rangle \\
& =(-4) \times(-4)+0 \times 0+2 \times 2=20
\end{aligned}
$$

$$
\begin{aligned}
&\|p\|=\sqrt{20} \\
&\langle q, q\rangle=\left\langle 3+2 t^{2}, \quad 3+2 t^{2}\right\rangle \\
&=5 \times 5+3 \times 3+5 \times 5 \\
&=59 \\
&\|q\|=\sqrt{\langle q, q\rangle}=\sqrt{59}
\end{aligned}
$$

(3). The orthogonal projection \hat{q} of q onto the subspace spanned by p is

$$
\begin{aligned}
\hat{q}=\frac{\langle q, p\rangle}{\langle p, p\rangle} p & =\frac{-10}{20}\left(3 t-t^{2}\right) \\
& \Rightarrow \quad \hat{q}
\end{aligned}=-\frac{1}{2}\left(3 t-t^{2}\right)
$$

The existence of orthogonal bases for finite-dimensional subspaces of an inner product space can be established by the Gram-Schmidt process, just as in \mathbb{R}^{n}.

Example 3 Let V be \mathbb{P}_{4} with the inner product given by the evaluation at $-2,-1,0,1$, and 2 , and view \mathbb{P}_{2} as a subspace of V. Produce an orthogonal basis for \mathbb{P}_{2} by applying the Gram-Schmidt process to the polynomials $1, t$, and t^{2}.
ANs: We will use the Gram-Schmidt Process in $\$ 6.4$ to produce the orthogonal basis.
Notice the inner products depend only on the polynomial values at $-2,-1,0,1,2$. We list them for $1, t, t^{2}$ as vectors in \mathbb{R}^{5} for later computation. polynomials: $1 \quad t \quad t^{2}$ $\left.\begin{array}{c}\text { Their values } \\ \text { at }-2,-1,0,1,2 \\ 1 \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ -1 \\ 4\end{array}\right]$

Let $p_{0}(t)=1$
Notice that $\left\langle t, p_{0}(t)\right\rangle=-2-1+0+1+2=0$
This means t is orthogonal to $p_{0}(t)=1$.
So we take $p_{1}(t)=t$.
Then

$$
p_{2}(t)=t^{2}-\frac{\left\langle t^{2}, p_{1}(t)\right\rangle}{\left\langle p_{1}(t), p_{1}(t)\right\rangle} p_{1}(t)-\frac{\left\langle t^{2}, p_{0}(t)\right\rangle}{\left\langle p_{0}(t), p_{0}(t)\right\rangle} p_{0}(t)
$$

$$
\begin{aligned}
& \left.=t^{2}-\frac{\left\langle t^{2}, t\right\rangle}{\langle t, t\rangle} t-\frac{\left\langle t^{2}, 1\right\rangle}{\langle 1,1\rangle} x \right\rvert\, \\
& =t^{2}-\frac{0}{\langle t, t\rangle} t-\frac{10}{5} \\
\Rightarrow p_{2}(t) & =t^{2}-2
\end{aligned}
$$

Thus an orthogonal basis for the the subspace \mathbb{P}_{2} of $V=\mathbb{P}_{4}$ is

$$
p_{0}(t)=1, \quad p_{1}(t)=t, \quad p_{2}(t)=t^{2}-2
$$

Example 4. Let V be \mathbb{P}_{4} with the inner product in Example 3, and let p_{0}, p_{1}, and p_{2} be the orthogonal basis found in Example 3 for the subspace \mathbb{P}_{2}.

Find the best approximation to $p(t)=5-\frac{1}{2} t^{4}$ by polynomials in \mathbb{P}_{2}.
Ans: The best approximation to $p(t)$ by polynomials in \mathbb{P}_{2} is

$$
\hat{p}=\operatorname{proj}_{\mathbb{P}_{2}} p=\frac{\left\langle p, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}+\frac{\left\langle p_{,} p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}
$$

We record the values for p_{0}, p_{1}, p_{2} and p at $-2,-1,0,1,2$. as the following for later computation.

$$
\begin{aligned}
& p_{0}=1 \quad p_{1}=t \quad p_{2}=t^{2}-2 \quad p=5-\frac{1}{2} t^{4} \\
& {\left[\begin{array}{c}
\downarrow \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \quad\left[\begin{array}{c}
-2 \\
-1 \\
0 \\
1 \\
2
\end{array}\right] \quad\left[\begin{array}{c}
\downarrow \\
-1 \\
-2 \\
-1 \\
2
\end{array}\right] \quad\left[\begin{array}{c}
\downarrow \\
9 / 2 \\
5 \\
9 / 2 \\
-3
\end{array}\right]} \\
& \text { So }\left\langle p, p_{0}\right\rangle=-3+\frac{9}{2}+5+\frac{9}{2}-3=8,\left\langle p_{0}, p\right\rangle=5 \\
& \left\langle p, p_{1}\right\rangle=6-\frac{9}{2}+\frac{9}{2}-6=0, \quad\left\langle p_{1}, p_{1}\right\rangle=10 \\
& \left\langle p, p_{2}\right\rangle=-6-\frac{9}{2}-10-\frac{9}{2}-6=-31, \quad\left\langle p_{2}, p_{2}\right\rangle=14
\end{aligned}
$$

So

$$
\hat{p}=\operatorname{proj}_{\mathbb{P}_{2}} p=\frac{\left\langle p, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}+\frac{\left\langle p_{1}, p_{2}\right\rangle}{\left\langle p_{2}, p_{2}\right\rangle} p_{2}
$$

$$
=\frac{8}{5} p_{0}+0+\frac{-31}{14} p_{2}
$$

Thus $\hat{p}=\frac{8}{5}-\frac{31}{14}\left(t^{2}-2\right)$ is the closest to $p=5-\frac{1}{2} t^{4}$ of all polynomials in \mathbb{P}_{2}.

When the distance between the polynomials is measured at $-2,-1,0,1,2$.

FIGURE 1

An Inner Product for $C[a, b]$ Vector space of all Continuous functions defined on $[a, b]$
For f, g in $C[a, b]$, set

$$
\begin{equation*}
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t \tag{3}
\end{equation*}
$$

Then (3) defines an inner product on $C[a, b]$. Since

- Inner product Axioms 1-3 follow from elementary properties of definite integrals. For Axiom 4, observe that

$$
\langle f, f\rangle=\int_{a}^{b}[f(t)]^{2} d t \geq 0
$$

- The function $[f(t)]^{2}$ is continuous and nonnegative on $[a, b]$. If the definite integral of $[f(t)]^{2}$ is zero, then $[f(t)]^{2}$ must be identically zero on $[a, b]$, by a theorem in advanced calculus, in which case f is the zero function.
- Thus $\langle f, f\rangle=0$ implies that f is the zero function on $[a, b]$. So (3) defines an inner product on $C[a, b]$.

Example 5 Let V be the space $C[-1,1]$ with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

$$
\text { Recall } \int t^{n} d t=\frac{1}{n+1} t^{n+1}+c
$$

Find an orthogonal basis for the subspace spanned by the polynomials $1, t$, and t^{2}.
Ans: We will use the Gram-Schmidt process in $\S 6.4$ to produce the orthogonal basis.
Notice that 1, and tare orthogonal since

$$
\langle 1, t\rangle=\int_{-1}^{1} t d t=\left.\frac{1}{2} t^{2}\right|_{-1} ^{1}=0
$$

So we can take the first two elements of the orthogonal basis to be 1 and t.
By the Gram-schmidt process, the third basis
element can be computed as
$t^{2}-\frac{\left\langle t^{2}, 1\right\rangle}{\langle 1,1\rangle} 1-\frac{\left\langle t^{2}, t\right\rangle}{\langle t, t\rangle} t$

Note

$$
\begin{aligned}
& \left\langle t^{2}, \mid\right\rangle=\int_{-1}^{1} t^{2} d t=\left.\frac{1}{3} t^{3}\right|_{-1} ^{1}=\frac{2}{3} \\
& \langle 1, \mid\rangle=\int_{-1}^{1} d t=\left.t\right|_{-1} ^{1}=2 \\
& \left\langle t^{2}, t\right\rangle=\int_{-1}^{1} t^{3} d t=\left.\frac{1}{4} t^{4}\right|_{-1} ^{1}=0 \\
& \text { So } t^{2}-\frac{\frac{2}{3}}{2} \times 1-0=t^{2}-\frac{1}{3}
\end{aligned}
$$

can be the third element of the orthogonal basis. We can scale it to be $3 t^{2}-1$

Therefore an orthogonal basis for $\operatorname{span}\left\{1, t, t^{2}\right\}$ is $\left\{1, t, 3 t^{2}-1\right\}$.

Exercise 6. Let \mathbb{P}_{3} have the inner product given by evaluation at $-3,-1,1$, and 3 .
Let $p_{0}(t)=1, p_{1}(t)=t$, and $p_{2}(t)=t^{2}$.
a. Compute the orthogonal projection of p_{2} onto the subspace spanned by p_{0} and p_{1}.
b. Find a polynomial q that is orthogonal to p_{0} and p_{1}, such that $\left\{p_{0}, p_{1}, q\right\}$ is an orthogonal basis for Span $\left\{p_{0}, p_{1}, p_{2}\right\}$. Scale the polynomial q so that its vector of values at $(-3,-1,1,3)$ is $(1,-1,-1,1)$.

Solution. The inner product is $\langle p, q\rangle=p(-3) q(-3)+p(-1) q(-1)+p(1) q(1)+p(3) q(3)$.
a. The orthogonal projection \hat{p}_{2} of p_{2} onto the subspace spanned by p_{0} and p_{1} is
$\hat{p}_{2}=\frac{\left\langle p_{2}, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p_{2}, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}=\frac{20}{4}(1)+\frac{0}{20} t=5$.
b. The vector $q=p_{2}-\hat{p}_{2}=t^{2}-5$ will be orthogonal to both p_{0} and p_{1} and $\left\{p_{0}, p_{1}, q\right\}$ will be an orthogonal basis for $\operatorname{Span}\left\{p_{0}, p_{1}, p_{2}\right\}$. The vector of values for q at $(-3,-1,1,3)$ is $(4,-4,-4,4)$, so scaling by $1 / 4$ yields the new vector $q=(1 / 4)\left(t^{2}-5\right)$.

Exercise 7. Let \mathbb{P}_{3} have the inner product as in Exercise 6, with p_{0}, p_{1}, and q the polynomials described there. Find the best approximation to $p(t)=t^{3}$ by polynomials in $\operatorname{Span}\left\{p_{0}, p_{1}, q\right\}$.

Solution. The best approximation to $p=t^{3}$ by vectors in $W=\operatorname{Span}\left\{p_{0}, p_{1}, q\right\}$ will be

$$
\hat{p}=\operatorname{proj}_{W} p=\frac{\left\langle p, p_{0}\right\rangle}{\left\langle p_{0}, p_{0}\right\rangle} p_{0}+\frac{\left\langle p, p_{1}\right\rangle}{\left\langle p_{1}, p_{1}\right\rangle} p_{1}+\frac{\langle p, q\rangle}{\langle q, q\rangle} q=\frac{0}{4}(1)+\frac{164}{20}(t)+\frac{0}{4}\left(\frac{t^{2}-5}{4}\right)=\frac{41}{5} t .
$$

